Benchmarking Deep Neural Network Training Using Multi- and Many-Core Processors
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-47679-3_20
Reference16 articles.
1. Lecture Notes in Computer Science;P Czarnul,2018
2. Czarnul, P.: Benchmarking performance of a hybrid Intel Xeon/Xeon Phi system for parallel computation of similarity measures between large vectors. Int. J. Parallel Program. 45, 1091–1107 (2017). https://doi.org/10.1007/s10766-016-0455-0
3. Krzywaniak, A., Proficz, J., Czarnul, P.: Analyzing energy/performance trade-offs with power capping for parallel applications on modern multi and many core processors. In: FedCSIS, pp. 339–346 (2018)
4. Shi, S., Wang, Q., Xu, P., Chu, X.: Benchmarking state-of-the-art deep learning software tools. In: 2016 7th International Conference on Cloud Computing and Big Data (CCBD), pp. 99–104 (2016)
5. Serpa, M.S., Krause, A.M., Cruz, E.H.M., Navaux, P.O.A., Pasin, M., Felber, P.: Optimizing machine learning algorithms on multi-core and many-core architectures using thread and data mapping. In: 2018 26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 329–333 (2018)
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Performance and Energy Aware Training of a Deep Neural Network in a Multi-GPU Environment with Power Capping;Lecture Notes in Computer Science;2024
2. Performance Characterization of Popular DNN Models on Out-of-Order CPUs;2023 32nd International Conference on Parallel Architectures and Compilation Techniques (PACT);2023-10-21
3. GPU Power Capping for Energy-Performance Trade-Offs in Training of Deep Convolutional Neural Networks for Image Recognition;Computational Science – ICCS 2022;2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3