Über die Kettenbrüche, deren Teilnenner arithmetische Reihen bilden

Author:

Hurwitz Adolf

Publisher

Springer Basel

Reference5 articles.

1. O. Stolz, Vorlesungen über allgemeine Arithmetik, Bd. II, S.285. (Leipzig 1886.)

2. [Diese Werke, Bd. II, S. 129–133.]

3. Die regelmässige Kettenbruchentwicklung der Zahl e ist, wie Herr Rudio in seiner interessanten Schrift: Archimedes, Huygens, Lambert, Legendre. Vier Abhandlungen über die Kreismessung (mit einer Übersicht über die Geschichte des Problemes von der Quadratur des Zirkels), Leipzig 1892, bemerkt, schon von Euler im Jahre 1737 in der Abhandlung „De fractionibus continuis dissertatio” (Comment. Acad. Petrop. T. IX, p.120) mitgeteilt worden.

4. Mathem. Annalen, Bd. 43 (1893), S. 216–224 [Hurwitz auch: diese Werke, Bd. II, S. 134–135].

5. Eine eingehende Untersuchung der Kettenbruchentwicklung nach nächsten Ganzen hat der Verfasser in Bd. 12 der Acta Mathematica (1889) [diese Werke, Bd. II, S. 84–115] veröffentlicht. Mit Hilfe der oben angegebenen Transformation der regelmässigen Kettenbruchentwicklung in die nach nächsten Ganzen lassen sich manche Sätze, die für die erstere Entwicklung gelten, auf die letztere übertragen. Indessen dürfte es schwierig sein, auf diesem Wege die a. a. O. bewiesenen tiefer liegenden Sätze über die Entwicklung nach nächsten Ganzen, insbesondere den merkwürdigen Zusammenhang dieser Entwicklung mit einer nach ganz anderem Gesetze gebildeten zu entdecken.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Continued fraction of e2 with confluent hypergeometric functions;Lithuanian Mathematical Journal;2006-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3