1. Chung, J.J.Y., Kamar, E., Amershi, S.: Increasing diversity while maintaining accuracy: text data generation with large language models and human interventions. In: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, vol. 1, pp. 575–593 (2023). https://aclanthology.org/2023.acl-long.34.pdf
2. Hammond, K.J., Leake, D.B.: Large language models need symbolic AI. In: d’Avila Garcez, A.S., Besold, T.R., Gori, M., Jiménez-Ruiz, E. (eds.) Proceedings of the 17th International Workshop on Neural-Symbolic Learning and Reasoning, La Certosa di Pontignano, Siena, Italy, 3–5 July 2023. CEUR Workshop Proceedings, vol. 3432, pp. 204–209. CEUR-WS.org (2023). https://ceur-ws.org/Vol-3432/paper17.pdf
3. Heidrich, L., Slany, E., Scheele, S., Schmid, U.: FairCaipi: a combination of explanatory interactive and fair machine learning for human and machine bias reduction. Mach. Learn. Knowl. Extr. 5, 1519–1538 (2023). https://doi.org/10.3390/make5040076
4. Kimmig, A., Demoen, B., Raedt, L.D., Costa, V.S., Rocha, R.: On the implementation of the probabilistic logic programming language ProbLog. Theory Pract. Log. Program. 11(2–3), 235–262 (2011). https://doi.org/10.1017/S1471068410000566
5. Nye, M.I., Tessler, M.H., Tenenbaum, J.B., Lake, B.M.: Improving coherence and consistency in neural sequence models with dual-system, neuro-symbolic reasoning. In: Ranzato, M., Beygelzimer, A., Dauphin, Y.N., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, 6–14 December 2021, Virtual, pp. 25192–25204 (2021). https://proceedings.neurips.cc/paper/2021/hash/d3e2e8f631bd9336ed25b8162aef8782-Abstract.html