Explanatory Interactive Machine Learning with Counterexamples from Constrained Large Language Models

Author:

Slany EmanuelORCID,Scheele StephanORCID,Schmid UteORCID

Publisher

Springer Nature Switzerland

Reference13 articles.

1. Chung, J.J.Y., Kamar, E., Amershi, S.: Increasing diversity while maintaining accuracy: text data generation with large language models and human interventions. In: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, vol. 1, pp. 575–593 (2023). https://aclanthology.org/2023.acl-long.34.pdf

2. Hammond, K.J., Leake, D.B.: Large language models need symbolic AI. In: d’Avila Garcez, A.S., Besold, T.R., Gori, M., Jiménez-Ruiz, E. (eds.) Proceedings of the 17th International Workshop on Neural-Symbolic Learning and Reasoning, La Certosa di Pontignano, Siena, Italy, 3–5 July 2023. CEUR Workshop Proceedings, vol. 3432, pp. 204–209. CEUR-WS.org (2023). https://ceur-ws.org/Vol-3432/paper17.pdf

3. Heidrich, L., Slany, E., Scheele, S., Schmid, U.: FairCaipi: a combination of explanatory interactive and fair machine learning for human and machine bias reduction. Mach. Learn. Knowl. Extr. 5, 1519–1538 (2023). https://doi.org/10.3390/make5040076

4. Kimmig, A., Demoen, B., Raedt, L.D., Costa, V.S., Rocha, R.: On the implementation of the probabilistic logic programming language ProbLog. Theory Pract. Log. Program. 11(2–3), 235–262 (2011). https://doi.org/10.1017/S1471068410000566

5. Nye, M.I., Tessler, M.H., Tenenbaum, J.B., Lake, B.M.: Improving coherence and consistency in neural sequence models with dual-system, neuro-symbolic reasoning. In: Ranzato, M., Beygelzimer, A., Dauphin, Y.N., Liang, P., Vaughan, J.W. (eds.) Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, 6–14 December 2021, Virtual, pp. 25192–25204 (2021). https://proceedings.neurips.cc/paper/2021/hash/d3e2e8f631bd9336ed25b8162aef8782-Abstract.html

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3