1. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)
2. Hryniowski, A., Wong, A.: DeepLABNet: end-to-end learning of deep radial basis networks. J. Comput. Vision Imaging Syst. 5(1), 1 (2020). https://openjournals.uwaterloo.ca/index.php/vsl/article/view/1663
3. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848
4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90
5. Kumar, S.K.: On weight initialization in deep neural networks. arXiv (2017). http://arxiv.org/abs/1704.08863