1. Orozco, J., Reyes, C.: Extraction and analysis of acoustic characteristics of baby crying for automatic recognition based on neural networks. Ph.D. dissertation, Master’s thesis, INAOE, Puebla, Mexico (2002)
2. Galaviz, O.F.R.: Classification of baby crying for identification of hypoacuse and asphyxia by means of a hybrid system (genetic-neuronal). Master’s thesis on Computer Science, Apizaco Institute of Technology (ITA) (2005)
3. Fuhr, T., Reetz, H., Wegener, C.: Comparison of supervised-learning models for infant cry classification/vergleich von klassifikations modellen zur säuglingsschrei analyse. Int. J. Health Prof. 2(1), 4–15 (2015)
4. Amaro-Camargo, E., Reyes-Garcia, C.A.: Applying statistical vectors of acoustic characteristics for the automatic classification of infant cry. Adv. Pattern Recognit. 4681, 1078–1085 (2007)
5. Aucouturier, J.-J., Nonaka, Y., Katahira, K., Okanoya, K.: Segmentation of expiratory and inspiratory sounds in baby cry audio recordings using hidden Markov models. J. Acoust. Soc. Am. 130(5), 2969–2977 (2011)