Author:
Wessels Henning,Böhm Christoph,Aldakheel Fadi,Hüpgen Markus,Haist Michael,Lohaus Ludger,Wriggers Peter
Publisher
Springer International Publishing
Reference33 articles.
1. Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686–707.
2. Wessels, H., Weißenfels, C., & Wriggers, P. (2020). The neural particle method—An updated lagrangian physics informed neural network for computational fluid dynamics. Computer Methods in Applied Mechanics and Engineering, 368, 113–127.
3. Haghighat, E., Raissi, M., Moure, A., Gomez, H., & Juanes, R. (2020). A deep learning framework for solution and discovery in solid mechanics: Linear elasticity. arXiv:2003.02751.
4. Yang, Z., Yabansu, Y. C., Al-Bahrani, R., Liao, W.-K., Choudhary, A. N., Kalidindi, S. R., & Agrawal, A. (2018). Deep learning approaches for mining structure-property linkages in high contrast composites from simulation datasets. Computational Materials Science, 151, 278–287.
5. Beniwal, A., Dadhich, R., & Alankar, A. (2019). Deep learning based predictive modeling for structure-property linkages. Materialia, 8, 100435.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献