Federated Learning Meets HPC and Cloud

Author:

Colonnelli Iacopo,Casella Bruno,Mittone Gianluca,Arfat Yasir,Cantalupo Barbara,Esposito Roberto,Martinelli Alberto Riccardo,Medić Doriana,Aldinucci Marco

Publisher

Springer International Publishing

Reference18 articles.

1. Taylor, R., Porto, F., Cui, C., Wadadekar, Y., Malkov, O.: Big data research infrastructure collaboration toward the SKA (BRICSKA). An. Acad. Bras. Cienc. 93 (2021)

2. Reina, G.A., Gruzdev, A., Foley, P., Perepelkina, O., Sharma, M., Davidyuk, I., et al.: Openfl: An open-source framework for federated learning. CoRR abs/2105.06413 (2021)

3. Beutel, D.J., Topal, T., Mathur, A., Qiu, X., Parcollet, T., Lane, n.d.: Flower: a friendly federated learning research framework. CoRR abs/2007.14390 (2020)

4. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Proc. of the 20th Intl. Conference on Artificial Intelligence and Statistics, AISTATS 2017. Proc. of Machine Learning Research, vol. 54, pp. 1273–1282. PMLR, Fort Lauderdale, FL, USA (2017)

5. Polato, M., Esposito, R., Aldinucci, M.: Boosting the federation: Cross-silo federated learning without gradient descent. In: Intl. Joint Conference on Neural Networks, IJCNN 2022, Padua, Italy, 2022. IEEE, New York (2022)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Workflow Management System Approach To Federated Learning: Application to Industry 4.0;2024 20th International Conference on Distributed Computing in Smart Systems and the Internet of Things (DCOSS-IoT);2024-04-29

2. Benchmarking Federated Learning on High-Performance Computing: Aggregation Methods and Their Impact;2024 32nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP);2024-03-20

3. On the Dynamics of Non-IID Data in Federated Learning and High-Performance Computing;2024 32nd Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP);2024-03-20

4. Cross-Facility Federated Learning;Procedia Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3