1. Taylor, R., Porto, F., Cui, C., Wadadekar, Y., Malkov, O.: Big data research infrastructure collaboration toward the SKA (BRICSKA). An. Acad. Bras. Cienc. 93 (2021)
2. Reina, G.A., Gruzdev, A., Foley, P., Perepelkina, O., Sharma, M., Davidyuk, I., et al.: Openfl: An open-source framework for federated learning. CoRR abs/2105.06413 (2021)
3. Beutel, D.J., Topal, T., Mathur, A., Qiu, X., Parcollet, T., Lane, n.d.: Flower: a friendly federated learning research framework. CoRR abs/2007.14390 (2020)
4. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: Proc. of the 20th Intl. Conference on Artificial Intelligence and Statistics, AISTATS 2017. Proc. of Machine Learning Research, vol. 54, pp. 1273–1282. PMLR, Fort Lauderdale, FL, USA (2017)
5. Polato, M., Esposito, R., Aldinucci, M.: Boosting the federation: Cross-silo federated learning without gradient descent. In: Intl. Joint Conference on Neural Networks, IJCNN 2022, Padua, Italy, 2022. IEEE, New York (2022)