1. Armato III, S.G., et al.: Data from LIDC-IDRI. the cancer imaging archive. 2015. https://doi.org/10.7937/K9/TCIA.2015.LO9QL9SX
2. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. Cancer Imaging Arch. 286, (2017)
3. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4, 1–13 (2017)
4. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint arXiv:1811.02629 (2018)
5. Lecture Notes in Computer Science;CF Baumgartner,2019