Publisher
Springer Nature Switzerland
Reference40 articles.
1. Abbe, E., Bandeira, A.S., Hall, G.: Exact recovery in the stochastic block model. IEEE Trans. Inf. Theory 62(1), 471–487 (2016)
2. Abdollahi, B., Nasraoui, O.: Using explainability for constrained matrix factorization. In: Proceedings of the 11th ACM Conference Recommender Systems, pp. 79–83 (2017)
3. Aicher, C., Jacobs, A., Clauset, A.: Learning latent block structure in weighted networks. J. Complex Netw. 3(2), 221–248 (2014). https://doi.org/10.1093/comnet/cnu026
4. Airoldi, E., Blei, D., Fienberg, S., Xing, E.: Combining stochastic block models and mixed membership for statistical network analysis. In: Airoldi, E., Blei, D.M., Fienberg, S.E., Goldenberg, A., Xing, E.P., Zheng, A.X. (eds.) ICML 2006. LNCS, vol. 4503, pp. 57–74. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73133-7_5
5. Airoldi, E., Blei, D., Fienberg, S., Xing, E.: Mixed membership stochastic blockmodels. J. Mach. Learn. Res. 9, 1981–2014 (2008)