1. Brochu, E., Cora, V.M., de Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Technical report, University of British Columbia (2010)
2. Dallaire, P., Besse, C., Chaib-Draa, B.: An approximate inference with Gaussian process to latent functions from uncertain data. Neurocomputing 74, 1945–1955 (2011)
3. Damianou, A.C., Titsias, M.K., Lawrence, N.D.: Variational inference for latent variables and uncertain inputs in Gaussian processes. J. Mach. Learn. Res. 17(1), 1–62 (2016)
4. Girard, A.: Approximate methods for propagation of uncertainty with Gaussian process models. University of Glasgow, Ph.D (2004)
5. Hennig, P., Schuler, C.J.: Entropy search for information-efficient global optimization. J. Mach. Learn. Res. (JMLR) 13, 1809–1837 (2012)