Author:
Mensouri Houssam,Azmani Abdellah,Azmani Monir
Publisher
Springer Nature Switzerland
Reference34 articles.
1. Yang, Z., Zhang, W., Feng, J.: Predicting multiple types of traffic accident severity with explanations: a multi-task deep learning framework. Saf. Sci. 146, 105522 (2022). https://doi.org/10.1016/j.ssci.2021.105522
2. National Bureau of Statistics of China. China statistical yearbook 2020 - 2020 - National Bureau Stat (2020). https://www.chapitre.com/BOOK/national-bureau-stat/china-statistical-yearbook-2020-2020,81567560.aspx. Accessed 13 Mar 2022
3. Tambouratzis, T., Souliou, D., Chalikias, M., Gregoriades, A.: Maximising accuracy and efficiency of traffic accident prediction combining information mining with computational intelligence approaches and decision trees. J. Artificial Intelligence and Soft Computing Res. 4(1), 31 (2014)
4. Zhu, L., Lu, L., Zhang, W., Zhao, Y., Song, M.: Analysis of accident severity for curved roadways based on bayesian networks. Sustainability 11(8), 8 (2019). https://doi.org/10.3390/su11082223
5. Arteaga, C., Paz, A., Park, J.: Injury severity on traffic crashes: a text mining with an interpretable machine-learning approach. Saf. Sci. 132, 104988 (2020). https://doi.org/10.1016/j.ssci.2020.104988