Machine Learning Models for Measuring Syntax Complexity of English Text
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-25719-4_59
Reference15 articles.
1. Schicchi D, Pilato G (2018) WORDY: a semi-automatic methodology aimed at the creation of neologisms based on a semantic network and blending devices. In: Barolli L, Terzo O (eds) Complex, intelligent, and software intensive systems. Springer, Cham, pp 236–248
2. Schicchi D, Pilato G (2018) A social humanoid robot as a playfellow for vocabulary enhancement. In: 2018 second IEEE international conference on robotic computing (IRC). IEEE Computer Society, Los Alamitos, pp 205–208
3. Di Gangi MA, Federico M (2018) Deep neural machine translation with weakly-recurrent units. In: 21st annual conference of the European association for machine translation, pp 119–128
4. Alfano M, Lenzitti B, Lo Bosco G, Perticone V (2015) An automatic system for helping health consumers to understand medical texts, pp 622–627
5. Kincaid J (1975) Derivation of new readability formulas: (automated readability index, fog count and Flesch reading ease formula) for navy enlisted personnel. Research branch report. Chief of naval technical training, Naval Air Station Memphis
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Studying the Effect of Syntactic Simplification on Text Summarization;IETE Technical Review;2022-03-31
2. DeepEva: A deep neural network architecture for assessing sentence complexity in Italian and English languages;Array;2021-12
3. Enriching Didactic Similarity Measures of Concept Maps by a Deep Learning Based Approach;2021 25th International Conference Information Visualisation (IV);2021-07
4. On the use of FIS inside a Telehealth system for cardiovascular risk monitoring;2021 29th Mediterranean Conference on Control and Automation (MED);2021-06-22
5. A Controllable Text Simplification System for the Italian Language;2021 IEEE 15th International Conference on Semantic Computing (ICSC);2021-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3