1. Fahim, M., Sillitti, A.: Anomaly detection, analysis and prediction techniques in IoT environment: a systematic literature review. IEEE Access 7, 81664–81681 (2019)
2. Mikulová, M., Straka, M., Štěpánek, J., Štěpánková, B., Hajic, J.: Quality and efficiency of manual annotation: pre-annotation bias. In: Proceedings of the 13th Language Resources and Evaluation Conference, pp. 2909–2918. European Language Resources Association, Marseille, France (2022)
3. Zhong, L., Zhu, Y., Van Leeuwen, M.: A survey on explainable anomaly detection. ACM Trans. Knowl. Discov. Data 18(1), 1–54 (2023)
4. Himeur, Y., Ghanem, K., Alsalemi, A., Bensaali, F., Amira, A.: Anomaly detection of energy consumption in buildings: a review, current trends and new perspectives. arXiv:2010.04560 (2020)
5. Habeeb, R.A.A., Nasaruddin, F., Gani, A., Hashem, I.A.T., Ahmed, E., Imran, M.: Real-time big data processing for anomaly detection: a survey. Int. J. Inf. Manage. 45, 289–307 (2019)