1. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)
2. Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599 (2010)
3. Calandra, R., Gopalan, N., Seyfarth, A., Peters, J., Deisenroth, M.P.: Bayesian gait optimization for bipedal locomotion. In: Battiti, R., Brunato, M., Kotsireas, I., Pardalos, P.M., (eds.) Learning and Intelligent Optimization LION 12 2018. LNCS, vol. 11353, pp. 274–290. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05348-2
4. Córdoba, I., Garrido-Merchán, E.C., Hernández-Lobato, D., Bielza, C., Larranaga, P.: Bayesian optimization of the PC algorithm for learning Gaussian Bayesian networks. In: Herrera, F., et al. (eds.) Conference of the Spanish Association for Artificial Intelligence. LNCS, pp. 44–54. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00374-6
5. Davis, L.: Handbook of Genetic Algorithms