1. Andersen, P., Goodwin, M., Granmo, O.: Deep RTS: a game environment for deep reinforcement learning in real-time strategy games. In: 2018 IEEE Conference on Computational Intelligence and Games (CIG), pp. 1–8 (2018). https://doi.org/10.1109/CIG.2018.8490409
2. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence);P-A Andersen,2018
3. Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep reinforcement learning: a brief survey. IEEE Signal Process. Mag. 34(6), 26–38 (2017). https://doi.org/10.1109/MSP.2017.2743240
4. Chua, K., Calandra, R., McAllister, R., Levine, S.: Deep reinforcement learning in a handful of trials using probabilistic dynamics models. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31, pp. 4754–4765. Curran Associates, Inc. (2018)
5. Coumans, E., Bai, Y.: PyBullet, a Python module for physics simulation for games, robotics and machine learning. http://pybullet.org