A Self-adaptive Hybrid Model/data-Driven Approach to SHM Based on Model Order Reduction and Deep Learning
Author:
Publisher
Springer International Publishing
Link
https://link.springer.com/content/pdf/10.1007/978-3-030-81716-9_8
Reference27 articles.
1. Bigoni C, Hesthaven JS (2020) Simulation-based anomaly detection and damage localization: an application to structural health monitoring. Comput Methods Appl Mech Eng 363:112896. https://doi.org/10.1016/j.cma.2020.112896
2. Bigoni C, Zhang Z, Hesthaven JS (2020) Systematic sensor placement for structural anomaly detection in the absence of damaged states. Comput Methods Appl Mech Eng 371:113315. https://doi.org/10.1016/j.cma.2020.113315
3. Bishop CM (1994) Mixture density networks. Aston University
4. Bull L, Worden K, Dervilis N (2020) Towards semi-supervised and probabilistic classification in structural health monitoring. Mech Syst Signal Process 140:106653. https://doi.org/10.1016/j.ymssp.2020.106653
5. Capellari G, Chatzi E, Mariani S (2018) Structural health monitoring sensor network optimization through Bayesian experimental design. ASCE-ASME J Risk Uncertain Eng Syst, Part A: Civ Eng 4(2):04018016. https://doi.org/10.1061/AJRUA6.0000966
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. EKF–SINDy: Empowering the extended Kalman filter with sparse identification of nonlinear dynamics;Computer Methods in Applied Mechanics and Engineering;2024-11
2. Damage Detection with Data-Driven Machine Learning Models on an Experimental Structure;Eng;2024-04-17
3. A digital twin framework for civil engineering structures;Computer Methods in Applied Mechanics and Engineering;2024-01
4. Multi-storey shear type buildings under earthquake loading: Adversarial learning-based prediction of the transient dynamics and damage classification;Soil Dynamics and Earthquake Engineering;2023-10
5. SHM under varying environmental conditions: an approach based on model order reduction and deep learning;Computers & Structures;2022-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3