Publisher
Springer Nature Switzerland
Reference8 articles.
1. Acharya, U.R., et al.: A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. 89, 389–396 (2017). https://doi.org/10.1016/j.compbiomed.2017.08.022, https://www.sciencedirect.com/science/article/pii/S0010482517302810
2. Bohte, S., La Poutre, H., Kok, J.: Unsupervised clustering with spiking neurons by sparse temporal coding and multilayer RBF networks. IEEE Trans. Neural Netw. 13(2), 426–435 (2002). https://doi.org/10.1109/72.991428
3. Buonomano, D.V., Merzenich, M.M.: Temporal information transformed into a spatial code by a neural network with realistic properties. Science 267(5200), 1028–1030 (1995). https://doi.org/10.1126/science.7863330, https://www.science.org/doi/abs/10.1126/science.7863330
4. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. German National Research Center for Information Technology GMD Technical Report, vol. 148, Bonn, Germany (2001)
5. Li, T., Zhou, M.: ECG classification using wavelet packet entropy and random forests. Entropy 18(8) (2016). https://doi.org/10.3390/e18080285, https://www.mdpi.com/1099-4300/18/8/285