1. Armacki, A., Bajovic, D., Jakovetic, D., Kar, S.: One-shot federated learning for model clustering and learning in heterogeneous environments. arXiv preprint arXiv:2209.10866 (2022)
2. Armacki, A., Bajovic, D., Jakovetic, D., Kar, S.: Personalized federated learning via convex clustering. In: 2022 IEEE International Smart Cities Conference (ISC2), pp. 1–7. IEEE (2022)
3. Bian, J., Fu, Z., Xu, J.: FedSEAL: semi-supervised federated learning with self-ensemble learning and negative learning. arXiv preprint arXiv:2110.07829 (2021)
4. Chen, Y., Ning, Y., Slawski, M., Rangwala, H.: Asynchronous online federated learning for edge devices with non-IID data. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 15–24. IEEE (2020)
5. Diao, E., Ding, J., Tarokh, V.: SemiFL: semi-supervised federated learning for unlabeled clients with alternate training. In: Advances in Neural Information Processing Systems, vol. 35, pp. 17871–17884 (2022)