Publisher
Springer Nature Switzerland
Reference35 articles.
1. Alexandrov, A., Benidis, K., Bohlke-Schneider, M., Flunkert, V., Gasthaus, J., Januschowski, T., Maddix, D. C., Rangapuram, S., Salinas, D., Schulz, J., Stella, L., Türkmen, A. C., & Wang, Y. (2020). GluonTS: Probabilistic and neural time series modeling in Python. Journal of Machine Learning Research, 21(116), 1–6.
2. Bandara, K., Bergmeir, C., & Smyl, S. (2020). Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach. Expert Systems with Applications, 140, 112896.
3. Bandara, K., Hewamalage, H., Godahewa, R., & Gamakumara, P. (2021, December). A fast and scalable ensemble of global models with long memory and data partitioning for the M5 forecasting competition. International Journal of Forecasting.
4. Bandara, K., Hewamalage, H., Liu, Y.-H., Kang, Y., & Bergmeir, C. (2021, December). Improving the accuracy of global forecasting models using time series data augmentation. Pattern Recognition, 120, 108148.
5. Bandara, K., Shi, P., Bergmeir, C., Hewamalage, H., Tran, Q., & Seaman, B. (2019). Sales demand forecast in e-commerce using a long short-term memory neural network methodology. In Neural information processing (pp. 462–474). Springer International Publishing.