Author:
Wahengbam Monita,Sriram M.
Publisher
Springer Nature Switzerland
Reference20 articles.
1. Uzelaltinbulat, S., Ugur, B.: Lung tumor segmentation algorithm. Procedia Comput. Sci. 120, 140–147 (2017)
2. Nishio, M., Fujimoto, K., Matsuo, H., Muramatsu, C., Sakamoto, R., Fujita, H.: Lung cancer segmentation with transfer learning: usefulness of a pretrained model constructed from an artificial dataset generated using a generative adversarial network. Front. Artif. Intell. 4, 1–10 (2021)
3. Cifci, M.A.: SegChaNet: a novel model for lung cancer segmentation in CT scans. Appl. Bionics Biomech. 2022, 1–16 (2022)
4. Zhou, T., Dong, Y., Lu, H., Zheng, X., Qiu, S., Hou, S.: APU-Net: an attention mechanism parallel U-Net for lung tumor segmentation. BioMed Res. Int. 2022, 1–15 (2022)
5. Bao, S.-M., Hu, Q.-H., Yang, W.-T., Wang, Y., Tong, Y.-P., Bao, W.-D.: Targeting epidermal growth factor receptor in non-small-cell-lung cancer: current state and future perspective. Anti-Cancer Agents Med. Chem. 19(8), 984-991/ (2019)