1. Alcott, B.: Jevons’ paradox. Ecol. Econ. 54(1), 9–21 (2005)
2. Amodei, D., Hernandez, D., Sastry, G., Clark, J., Brockman, G., Sutskever, I.: AI and compute (2018). https://blog.openai.com/aiand-compute
3. Anthony, L.F.W., Kanding, B., Selvan, R.: Carbontracker: tracking and predicting the carbon footprint of training deep learning models. In: ICML Workshop on Challenges in Deploying and monitoring Machine Learning Systems, July 2020. arXiv:2007.03051
4. Bender, E.M., Gebru, T., McMillan-Major, A., Shmitchell, S.: On the dangers of stochastic parrots: can language models be too big? In: Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, pp. 610–623 (2021)
5. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)