MaxStyle: Adversarial Style Composition for Robust Medical Image Segmentation
Author:
Publisher
Springer Nature Switzerland
Link
https://link.springer.com/content/pdf/10.1007/978-3-031-16443-9_15
Reference37 articles.
1. Tao, Q., et al.: Deep learning-based method for fully automatic quantification of left ventricle function from cine MR images: a multivendor, multicenter study. Radiology 290(1), 180–513 (2019)
2. Liu, Q., et al.: Ms-net: multi-site network for improving prostate segmentation with heterogeneous MRI data. In: TMI (2020)
3. Liu, Q., Dou, Q., Heng, P.-A.: Shape-aware meta-learning for generalizing prostate MRI segmentation to unseen domains. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 475–485. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_46
4. Dou, Q., et al.: Domain generalization via model-agnostic learning of semantic features. In: NeurIPS 2019, pp. 6447–6458 (2019)
5. Wang, J., et al.: Generalizing to unseen domains: a survey on domain generalization. In: Zhou, Z. (ed.) IJCAI 2021, pp. 4627–4635 (2021)
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Source domain prior-assisted segment anything model for single domain generalization in medical image segmentation;Image and Vision Computing;2024-10
2. An Efficient Prostate MRI Segmentation using Deep Learning for better Cancer Diagnosis;2024 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE);2024-08-06
3. Learning Hierarchical Visual Transformation for Domain Generalizable Visual Matching and Recognition;International Journal of Computer Vision;2024-05-27
4. Single-Source Domain Generalization in Fundus Image Segmentation Via Moderating and Interpolating Input Space Augmentation;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14
5. Visually Source-Free Domain Adaptation via Adversarial Style Matching;IEEE Transactions on Image Processing;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3