1. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyperparameter optimization. Adv. Neural Inf. Process. Syst. 24 (2011)
2. Berk, J., Nguyen, V., Gupta, S., Rana, S., Venkatesh, S.: Exploration enhanced expected improvement for Bayesian optimization. In: Berlingerio, M., Bonchi, F., Gartner, T., Hurley, N., Ifrim, G. (eds.) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2018. LNCS, vol. 11052, pp. 621-637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10928-8_37
3. Bodin, E., Kaiser, M., Kazlauskaite, I., Dai, Z., Campbell, N., Ek, C.H.: Modulating surrogates for Bayesian optimization. In: International Conference on Machine Learning, pp. 970–979. PMLR (2020)
4. Brochu, E., Cora, V.M., De Freitas, N.: A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning (2010). arXiv preprint arXiv :1012.2599
5. Dewancker, I., McCourt, M., Clark, S.: Bayesian optimization for machine learning : a practical guidebook (2016). arXiv preprint arXiv :1612.04858