Abstract
AbstractSurrogate-assisted optimization algorithms are a commonly used technique to solve expensive-evaluation problems, in which a regression model is built to replace an expensive function. In some acquisition functions, the only requirement for a regression model is the predictions. However, some other acquisition functions also require a regression model to estimate the “uncertainty” of the prediction, instead of merely providing predictions. Unfortunately, very few statistical modeling techniques can achieve this, such as Kriging/Gaussian processes, and recently proposed genetic programming-based (GP-based) symbolic regression with Kriging (GP2). Another method is to use a bootstrapping technique in GP-based symbolic regression to estimate prediction and its corresponding uncertainty. This paper proposes to use GP-based symbolic regression and its variants to solve multi-objective optimization problems (MOPs), which are under the framework of a surrogate-assisted multi-objective optimization algorithm (SMOA). Kriging and random forest are also compared with GP-based symbolic regression and GP2. Experiment results demonstrate that the surrogate models using the GP2 strategy can improve SMOA’s performance.
Publisher
Springer Nature Switzerland
Reference23 articles.
1. Genetic and Evolutionary Computation;M Affenzeller,2014
2. Lecture Notes in Computer Science;A Agapitos,2012
3. Álvarez, M.A., Rosasco, L., Lawrence, N.D.: Kernels for Vector-Valued Functions. Review. Found. Trends Mach. Learn. 4(3), 195–266 (2012). https://doi.org/10.1561/2200000036
4. Andres, E., Salcedo-Sanz, S., Monge, F., Pellido, A.: Metamodel-assisted aerodynamic design using evolutionary optimization. In: EUROGEN (2011)
5. $$\check{Z}$$ilinskas, A., Mockus, J.: On one Bayesian method of search of the minimum. Avtomatica i Vicheslitel’naya Teknika 4, 42–44 (1972)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献