Publisher
Springer Nature Switzerland
Reference36 articles.
1. Akhtar, T., Shoemaker, C.A.: Multi-objective optimization of computationally expensive multi-modal functions with RBF surrogates and multi-rule selection. J. Glob. Optim. 64(1), 17–32 (2016). https://doi.org/10.1007/s10898-015-0270-y
2. Ariizumi, R., Tesch, M., Choset, H., Matsuno, F.: Expensive multiobjective optimization for robotics with consideration of heteroscedastic noise. In: Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (RSJ 2014), pp. 2230–2235. IEEE (2014)
3. Chugh, T., Jin, Y., Miettinen, K., Hakanen, J., Sindhya, K.: A surrogate-assisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization. IEEE Trans. Evol. Comput. 22(1), 129–142 (2018)
4. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)
5. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Syst. 9(2), 115–148 (1994)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献