1. Cevallos, A., Eisenbrand, F., Morell, S.: Diversity maximization in doubling metrics. In: 29th International Symposium on Algorithms and Computation, ISAAC 2018, pp. 33:1–33:12. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018). Article No. 33
2. Cevallos, A., Eisenbrand, F., Zenklusen, R.: Max-sum diversity via convex programming. In: 32nd Annual Symposium on Computational Geometry (SoCG). LIPIcs, vol. 51, pp. 26:1–26:14. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2016).
https://doi.org/10.4230/LIPIcs.SoCG.2016.26
3. Eremeev, A., Kel’manov, A., Kovalyov, M., Pyatkin, A.: Maximum diversity problem with squared Euclidean distance. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds.) Mathematical Optimization Theory and Operations Research, MOTOR 2019. LNCS, vol. 11548, pp. 541–551. Springer, Cham (2019)
4. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, San Francisco (1979)
5. Kel’manov, A.V., Romanchenko, S.M.: Pseudopolynomial algorithms for certain computationally hard vector subset and cluster analysis problems. Autom. Remote Control 73(2), 349–354 (2012)