Role of Machine Learning and Deep Learning in Internet of Things enabled Smart Cities
Author:
Publisher
Springer International Publishing
Link
https://link.springer.com/content/pdf/10.1007/978-3-030-89554-9_1
Reference41 articles.
1. Abaker, I., Hashem, T., Chang, V., Anuar, N. B., Adewole, K., Yaqoob, I., Gani, A., Ahmed, E., & Chiroma, H. (2016). The role of big data in smart city. International Journal of Information Management, 36, 748–758. https://www.sciencedirect.com/science/article/pii/S0268401216302778. Accessed 11 Feb 2020
2. Abbas, S., Khan, M. A., Falcon-Morales, L. E., Rehman, A., Saeed, Y., Zareei, M., … Mohamed, E. M. (2020). Modelling, simulation and optimization of power plant energy sustainability for IoT enabled smart cities empowered with deep extreme learning machines. IEEE Access, 8, 39982–39997.
3. Al-Sarem, M., Boulila, W., Al-Harby, M., Qadir, J., & Alsaeedi, A. (2019). Deep learning-based rumour detection on microblogging platforms: A systematic review. IEEE Access, 7, 152788–152812. https://ieeexplore.ieee.org/abstract/document/8871102/. Accessed 17 Apr 2020
4. Anagnostopoulos, T., Zaslavsky, A., Kolomvatsos, K., Medvedev, A., Amirian, P., Morley, J., & Hadjieftymiades, S. (2017). Challenges and opportunities of waste management in IoT-enabled smart cities: A survey. IEEE Transactions on Sustainable Computing, 2(3), 275–289.
5. Atitallah, S. B., Driss, M., Boulila, W., & Ghézala, H. B. (2020). Leveraging deep learning and IoT big data analytics to support the smart cities development: Review and future directions. Computer Science Review, 38, 100303.
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Grey Wolf Optimization-Based CNN-LSTM Network for the Prediction of Energy Consumption in Smart Home Environment;IEEE Access;2023
2. Analytical study of machine learning techniques on the smart home energy consumption;4TH INTERNATIONAL SCIENTIFIC CONFERENCE OF ALKAFEEL UNIVERSITY (ISCKU 2022);2023
3. Predictive Analysis of Energy Consumption for Energy Management in Smart Homes;Information and Communication Technology for Competitive Strategies (ICTCS 2022);2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3