Author:
Kumari Richa,Tyagi Dinesh Kumar,Battula Ramesh Babu
Publisher
Springer Nature Switzerland
Reference21 articles.
1. Hu, B., Isaac, M., Akinola, O.M., Hafizh, H., Zhang, W.: Federated learning empowered resource allocation in UAV-assisted edge intelligent systems. In: IEEE 3rd International Conference on Computer Communication and Artificial Intelligence, pp. 336–341 (2023)
2. Mahmoud, M.H., Albaseer, A., Abdallah, M., Al-Dhahir, N.: Federated learning resource optimization and client selection for total energy minimization under outage latency, and bandwidth constraints with partial or no CSI. IEEE Open J. Commun. Soc. 4(April), 936–953 (2023)
3. Guo, Q., Tang, F., Kato, N.: Federated reinforcement learning-based resource allocation for D2D-aided digital twin edge networks in 6G industrial IoT. IEEE Trans. Ind. Inf. 19(5), 7228–7236 (2023)
4. Wang, D., Qiu, A., Zhou, Q., Partani, S., Schotten, H.D.: The Effect of Variable Factors on the Handover Performance for Ultra Dense Network (2023)
5. Yang, Y., Hui, B., Yuan, H., Gong, N., Cao, Y.: PrivateFL: accurate, differentially private federated learning via personalized data transformation. In: 32nd USENIX Security Symposium, USENIX Security, vol. 2023, no. 3, pp. 1595–1611 (2023)