Author:
Li Mei,Yan Zeyu,Li Changsheng
Publisher
Springer Nature Switzerland
Reference42 articles.
1. Li, X.: Referencing unlabelled world data to prevent catastrophic forgetting in class-incremental learning, Ph.D. thesis, Virginia Tech (2022)
2. Mai, Z., Li, R., Jeong, J., Quispe, D., Kim, H., Sanner, S.: Online continual learning in image classification: an empirical survey. Neurocomputing 469, 28–51 (2022)
3. Tang, Y.M., Peng, Y.X., Zheng, W.S.: Learning to imagine: diversify memory for incremental learning using unlabeled data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9549–9558 (2022)
4. Leo, J., Kalita, J.: Incremental deep neural network learning using classification confidence thresholding. IEEE Trans. Neural Networks Learn. Syst. 33(12), 7706–7716 (2021)
5. Feng, K., Li, C., Zhang, X., Zhou, J.: Towards open temporal graph neural networks. arXiv preprint arXiv:2303.15015 (2023)