How to Make Latent Factors Interpretable by Feeding Factorization Machines with Knowledge Graphs
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-30793-6_3
Reference50 articles.
1. Abdollahi, B., Nasraoui, O.: Explainable matrix factorization for collaborative filtering. In: Proceedings of the 25th International Conference on World Wide Web, WWW 2016, Montreal, Canada, 11–15 April 2016, Companion Volume, pp. 5–6 (2016)
2. Abdollahi, B., Nasraoui, O.: Explainable restricted Boltzmann machines for collaborative filtering. CoRR abs/1606.07129 (2016)
3. Adomavicius, G., Kwon, Y.O.: Multi-criteria recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 847–880. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_25
4. Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.) Recommender Systems Handbook, pp. 217–253. Springer, Boston, MA (2011). https://doi.org/10.1007/978-0-387-85820-3_7
5. Anelli, V.W., Bellini, V., Di Noia, T., Bruna, W.L., Tomeo, P., Di Sciascio, E.: An analysis on time- and session-aware diversification in recommender systems. In: Bieliková, M., Herder, E., Cena, F., Desmarais, M.C. (eds.) Proceedings of the 25th Conference on User Modeling, Adaptation and Personalization, UMAP 2017, Bratislava, Slovakia, 09–12 July 2017, pp. 270–274. ACM (2017)
Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Evaluating Content-based Pre-Training Strategies for a Knowledge-aware Recommender System based on Graph Neural Networks;Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization;2024-06-22
2. Comprehensible Artificial Intelligence on Knowledge Graphs: A survey;Journal of Web Semantics;2023-12
3. Knowledge graph-based recommendation method for cold chain logistics;Expert Systems with Applications;2023-10
4. Fifth Knowledge-aware and Conversational Recommender Systems Workshop (KaRS);Proceedings of the 17th ACM Conference on Recommender Systems;2023-09-14
5. KGTORe: Tailored Recommendations through Knowledge-aware GNN Models;Proceedings of the 17th ACM Conference on Recommender Systems;2023-09-14
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3