Author:
Li Shuxian,Song Liyan,Wu Xiaoyu,Hu Zheng,Cheung Yiu-ming,Yao Xin
Publisher
Springer Nature Switzerland
Reference42 articles.
1. Alejo, R., Sotoca, J.M., Valdovinos, R.M., Casañ, G.A.: The multi-class imbalance problem: cost functions with modular and non-modular neural networks. In: International Symposium on Neural Networks, pp. 421–431. Springer (2009). https://doi.org/10.1007/978-3-642-01216-7_44
2. Buda, M., Maki, A., Mazurowski, M.A.: A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 106, 249–259 (2018)
3. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp. 1567–1578 (2019)
4. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artifi. Intell. Res. 16(1), 321–357 (2002)
5. Lecture Notes in Computer Science (Lecture Notes in Artificial Intelligence);NV Chawla,2003