1. Aggarwal, U., Popescu, A., Hudelot, C.: Active learning for imbalanced datasets. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1428–1437 (2020)
2. Algan, G., Ulusoy, I.: Image classification with deep learning in the presence of noisy labels: A survey. Knowl.-Based Syst. 215, 106771 (2021)
3. Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Pseudo-labeling and confirmation bias in deep semi-supervised learning. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2020). https://doi.org/10.1109/IJCNN48605.2020.9207304
4. Ash, J.T., Zhang, C., Krishnamurthy, A., Langford, J., Agarwal, A.: Deep batch active learning by diverse, uncertain gradient lower bounds. In: 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, 26–30 April 2020. OpenReview.net (2020). https://openreview.net/forum?id=ryghZJBKPS
5. Beck, N., Sivasubramanian, D., Dani, A., Ramakrishnan, G., Iyer, R.: Effective evaluation of deep active learning on image classification tasks. arXiv preprint arXiv:2106.15324 (2021)