1. Ahn, S., Ko, J., Yun, S.Y.: Cuda: curriculum of data augmentation for long-tailed recognition. arXiv preprint arXiv:2302.05499 (2023)
2. Baik, S., Choi, J., Kim, H., Cho, D., Min, J., Lee, K.M.: Meta-learning with task-adaptive loss function for few-shot learning. In: ICCV, pp. 9465–9474 (2021)
3. Brinkmeyer, L., Drumond, R.R., Burchert, J., Schmidt-Thieme, L.: Few-shot forecasting of time-series with heterogeneous channels. In: ECML, pp. 3–18 (2023)
4. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. In: NeurIPS (2019)
5. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artifi. Intell. Res. 16, 321–357 (2002)