A Comparison of Various Approaches to Reinforcement Learning Algorithms for Multi-robot Box Pushing
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-04792-4_6
Reference9 articles.
1. Chakraborty, J., Konar, A., Nagar, A., Das, S.: Rotation and translation selective pareto optimal solution to the box-pushing problem by mobile robots using NSGA-II. In: 2009 IEEE Congress on Evolutionary Computation, pp. 2120–2126, May 2009. https://doi.org/10.1109/CEC.2009.4983203
2. Hwang, K.S., Ling, J.L., Wang, W.H.: Adaptive reinforcement learning in box-pushing robots. In: 2014 IEEE International Conference on Automation Science and Engineering (CASE), pp. 1182–1187, August 2014. https://doi.org/10.1109/CoASE.2014.6899476
3. La, H.M., Lim, R., Sheng, W.: Multirobot cooperative learning for predator avoidance. IEEE Trans. Control Syst. Technol. 23(1), 52–63 (2015). https://doi.org/10.1109/TCST.2014.2312392
4. La, H.M., Lim, R.S., Sheng, W., Chen, J.: Cooperative flocking and learning in multi-robot systems for predator avoidance. In: 2013 IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, pp. 337–342, May 2013. https://doi.org/10.1109/CYBER.2013.6705469
5. Parra-Gonzalez, E.F., Ramirez-Torres, J.G., Toscano-Pulido, G.: A new object path planner for the box pushing problem. In: 2009 Electronics, Robotics and Automotive Mechanics Conference (CERMA), pp. 119–124, September 2009. https://doi.org/10.1109/CERMA.2009.54
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Design of Self-Organizing Systems Using Multi-Agent Reinforcement Learning and the Compromise Decision Support Problem Construct;Journal of Mechanical Design;2024-03-18
2. Cooperative object transportation with differential-drive mobile robots: Control and experimentation;Robotics and Autonomous Systems;2024-03
3. Deep-Reinforcement-Learning-Based Object Transportation Using Task Space Decomposition;Sensors;2023-05-16
4. A DRL Approach for Object Transportation in Complex Environments;2022 Latin American Robotics Symposium (LARS), 2022 Brazilian Symposium on Robotics (SBR), and 2022 Workshop on Robotics in Education (WRE);2022-10-18
5. Multi-agent Reinforcement Learning and Individuality Analysis for Cooperative Transportation with Obstacle Removal;Distributed Autonomous Robotic Systems;2022
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3