Author:
Nair Bhadra Jithesh,Kavya E.,Nandakumar R.
Publisher
Springer Nature Switzerland
Reference10 articles.
1. Maheshwari, S., Janet, B., Kumar, R.: Malicious URL Detection: A Comparative Study, pp. 1147–1151 (2021). https://doi.org/10.1109/ICAIS50930.2021.9396014
2. Bingi, S.R.: Improving the classification rate for detecting Malicious URL using Ensemble Learning Methods. Master’s thesis, Dublin, National College of Ireland (2021)
3. Catak, F.O., Şahinbaş, K., Dort Kardes, V.: Malicious URL Detection Using. Machine Learning. (2020). https://doi.org/10.4018/978-1-7998-5101-1.ch008
4. He, S., Li, B., Peng, H., Xin, J., Zhang, E.: An effective cost-sensitive XGBoost method for malicious URLs detection in imbalanced dataset. IEEE Access, 1–1 (2021). https://doi.org/10.1109/ACCESS.2021.3093094
5. Gbenga, F., Adetunmbi, A., Elohor, O.: Towards optimization of malware detection using extra-tree and random forest feature selections on ensemble classifiers. Int. J. Recent Technol. Eng. 9, 223–232 (2021). https://doi.org/10.35940/ijrte.F5545.039621