Author:
Apoorva A.,Archana C. R.,Teena T.,Vanitha P.,Chandrasekaran R.
Publisher
Springer Nature Switzerland
Reference13 articles.
1. Khan, F.A., Zeb, K., Al-Rakhami, M., Derhab, A., Bukhari, S.A.C.: Detection and prediction of diabetes using data mining: a comprehensive review. IEEE Access. 9, 43711–43735 (2021). https://doi.org/10.1109/ACCESS.2021.3059343
2. Sasubilli, S.M., Kumar, A., Dutt, V.: Machine learning implementation on medical domain to identify disease insights using TMS. In: 2020 International Conference on Advances in Computing and Communication Engineering (ICACCE), Las Vegas, NV, USA, pp. 1–4 (2020)
3. Ma, J.: Machine learning in predicting diabetes in the early stage. In: 2020 2nd International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI), Taiyuan, China, pp. 167–172 (2020). https://doi.org/10.1109/MLBDBI51377.2020.00037
4. Kohli, P.S., Arora, S.: Application of machine learning in disease prediction. In: 2018 4th International Conference on Computing Communication and Automation (ICCCA), Greater Noida, India, pp. 1–4 (2018). https://doi.org/10.1109/CCAA.2018.8777449
5. Shokrekhodaei, M., Cistola, D.P., Roberts, R.C., Quinones, S.: Non-invasive glucose monitoring using optical sensor and machine learning techniques for diabetes applications. IEEE Access. 9, 73029–73045 (2021)