Author:
Haman Samia,Moumen Aniss,Jenoui Kaoutar,Elbhiri Brahim,El Bouzekri El Idrissi Younes
Publisher
Springer Nature Switzerland
Reference18 articles.
1. Albadrani, A., Zohdy, M. A., & Olawoyin, R. (2020). An approach to optimize future inbound logistics processes using machine learning algorithms. In 2020 IEEE International Conference on Electro Information Technology (EIT) (pp. 402–406). IEEE.
2. Albadrani, A., Alghayadh, F., Zohdy, M. A., Aloufi, E., & Olawoyin, R. (2021). Performance and predicting of inbound logistics processes using machine learning. In 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 0790–0795). IEEE.
3. Bakar, N. A., et al. (2016). Abridgment of traditional procurement and e-procurement: definitions, tools and benefits. Journal of Emerging Economies and Islamic Research, 4(1), 74–91.
4. Dash, R., McMurtrey, M., Rebman, C., & Kar, U. K. (2019). Application of artificial intelligence in automation of supply chain management. Journal of Strategic Innovation and Sustainability, 14(3), 43–53.
5. Dondo, R., Méndez, C. A., & Cerdá, J. (2009). Managing distribution in supply chain networks. Industrial & Engineering Chemistry Research, 48(22), 9961–9978.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine Learning Applications in Supply Chain Management: Predictive Power Unleashed;2024 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA);2024-05-23