1. Chatfeld, K., Simonyan, K., Vedaldi, A., & Zisserman, A. (2014). Return of the devil in the details: Delving deep into convolutional nets. arXiv:1405.3531
2. Deng, J., Guo, J., Xue, N., & Zafeiriou, S. (2019). Arcface: Additive angular margin loss for deep face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 4690–4699).
3. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167
4. Li, S., & Deng, W. (2020). Deep facial expression recognition: A survey. IEEE Transactions on Affective Computing.
5. Lv, J. J., Cheng, C., Tian, G. D., Zhou, X. D., & Zhou, X. (2016). Landmark perturbation-based data augmentation for unconstrained face recognition. Signal Processing: Image Communication, 47, 465–475.