1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems (2016).
2. Cao, Y., Fang, Z., Wu, Y., Zhou, D.-X., and Gu, Q. Towards Understanding the Spectral Bias of Deep Learning (2020).
3. Cuomo, S., di Cola, V. S., Giampaolo, F., Rozza, G., Raissi, M., and Piccialli, F. Scientific machine learning through physics-informed neural networks: Where we are and what’s next. arXiv (2022).
4. De Ryck, T. and Mishra, S. Error analysis for physics-informed neural networks (PINNs) approximating Kolmogorov PDEs. Advances in Computational Mathematics 48(6), 79 (2022).
5. Eichinger, M., Heinlein, A., and Klawonn, A. Stationary flow predictions using convolutional neural networks. In: Numerical Mathematics and Advanced Applications ENUMATH 2019, 541–549. Springer (2021).