1. Augenstein, I., et al.: Factuality challenges in the era of large language models (2023). https://arxiv.org/abs/2310.05189
2. Bran, A.M., Cox, S., Schiller, O., Baldassart, C., White, A.D., Schwaller, P.: Augmenting large language models with chemistry tools (2023). https://arxiv.org/abs/2304.05376
3. Buhl, D., Szafarski, D., Welz, L., Lanquillon, C.: Conversation-driven refinement of knowledge graphs: true active learning with humans in the chatbot application loop. In: Degen, H., Ntoa, S. (eds.) HCII 2023. LNCS, vol. 14051, pp. 41–54. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-35894-4_3
4. Chen, L., et al.: Beyond factuality: a comprehensive evaluation of large language models as knowledge generators (2023). https://arxiv.org/abs/2310.07289
5. Cui, J., Li, Z., Yan, Y., Chen, B., Yuan, L.: ChatLaw: open-source legal large language model with integrated external knowledge bases (2023). https://arxiv.org/abs/2306.16092