Author:
Hameed Adel,Fourati Rahma,Ammar Boudour,Sanchez-Medina Javier,Ltifi Hela
Publisher
Springer Nature Switzerland
Reference23 articles.
1. Autthasan, P., et al.: Min2net: end-to-end multi-task learning for subject-independent motor imagery EEG classification. IEEE Trans. Biomed. Eng. 69(6), 2105–2118 (2021)
2. Brunner, C., Leeb, R., Müller-Putz, G., Schlögl, A., Pfurtscheller, G., Competition, B.: Graz data set a, provided by the institute for knowledge discovery (laboratory of brain–computer interfaces). Graz University of Technology (2008)
3. Fan, Z., et al.: Joint filter-band-combination and multi-view CNN for electroencephalogram decoding. IEEE Trans. Neural Syst. Rehabil. Eng. 31, 2101–2110 (2023)
4. Ghimire, A., Sekeroglu, K.: Classification of EEG motor imagery tasks utilizing 2D temporal patterns with deep learning. In: IMPROVE, pp. 182–188 (2022)
5. Hameed, A., et al.: Temporal-spatial transformer based motor imagery classification for BCI using independent component analysis. Biomed. Signal Process. Control 87, 105359 (2024)