Author:
Chen Ben,Chen Bin,Gao Dehong,Chen Qijin,Huo Chengfu,Meng Xiaonan,Ren Weijun,Zhou Yang
Publisher
Springer International Publishing
Reference18 articles.
1. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP). IEEE (2017)
2. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)
3. Xiao, C., Li, B., Zhu, J.-Y., He, W., Liu, M., Song, D.: Generating adversarial examples with adversarial networks. CoRR abs/1801.02610 (2018). A Service of Schloss Dagstuhl - Leibniz Center for Informatics
4. Miyato, T., Dai, A.M., Goodfellow, I.: Adversarial training methods for semi-supervised text classification. arXiv preprint arXiv:1605.07725 (2016)
5. Wang, W., et al.: Towards a robust deep neural network in texts: a survey. arXiv preprint arXiv:1902.07285 (2019)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献