1. Abgrall, R., Congedo, P.: A semi-intrusive deterministic approach to uncertainty quantification in non-linear fluid flow problems. J. Comput. Phys. 235, 828–845 (2013)
2. Abgrall, R., Mishra, S.: Chapter 19—uncertainty quantification for hyperbolic systems of conservation laws. In: Abgrall, R., Shu, C.-W. (eds.) Handbook of Numerical Methods for Hyperbolic Problems. Handbook of Numerical Analysis, vol. 18, pp. 507–544. Elsevier, Amsterdam (2017)
3. Barth, A., Schwab, C., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119, 123–161 (2011)
4. Beck, J., Nobile, F., Tamellini, L., Tempone, R.: Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: a numerical comparison. In: Hesthaven, J.S., Ronquist, E.M. (eds.) Spectral and High Order Methods for PDEs. Lecture Notes Computer Science Engineering, vol. 76, pp. 43–62. Springer, Berlin (2011)
5. Bijl, H., Lucor, D., Mishra, S., Schwab, Ch. (eds.) Uncertainty Quantification in Computational Fluid Dynamics. Lecture Notes in Computational Science and Engineering, vol. 92. Springer, Berlin (2014)