Dynamic Network Anomaly Detection System by Using Deep Learning Techniques
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-23502-4_12
Reference22 articles.
1. Ngu, A.H., et al.: IoT middleware: a survey on issues and enabling technologies. IEEE Internet of Things J. 4(1), 1–20 (2017)
2. Gill, P., Jain, N., Nagappan, N.: Understanding network failures in data centers: measurement, analysis, and implications. ACM SIGCOMM Comput. Commun. Rev. 41(4), 350–361 (2011)
3. Karatas, G., Demir, O., Sahingoz, O.K.: Deep learning in intrusion detection systems. In: 2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT), pp. 113–116 (2018)
4. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
5. Aksu, D., Aydin, M.A.: Detecting port scan attempts with comparative analysis of deep learning and support vector machine algorithms. In: 2018 International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT), pp. 77–80 (2018)
Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Cost-sensitive stacked long short-term memory with an evolutionary framework for minority class detection;Applied Soft Computing;2024-11
2. Effects of feature selection and normalization on network intrusion detection;Data Science and Management;2024-08
3. Multi-level authentication for security in cloud using improved quantum key distribution;Network: Computation in Neural Systems;2024-07-08
4. An enhanced strategy for minority class detection using bidirectional GRU employing penalized cross-entropy and self-attention mechanisms for imbalance network traffic;The European Physical Journal Plus;2024-06-17
5. Enhancing IoT Security with a Hardware Accelerated Machine Learning Model coupling Autoencoder and Long-Short-Term-Memory for Anomaly Detection;2024 IEEE International Symposium on Circuits and Systems (ISCAS);2024-05-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3