1. Altaheri, H., et al.: Deep learning techniques for classification of electroencephalogram (eeg) motor imagery (mi) signals: a review. Neural Comput. Appl. 35(20), 14681–14722 (2023)
2. Bao, H., Dong, L., Piao, S., Wei, F.: Beit: bert pre-training of image transformers. arXiv preprint arXiv:2106.08254 (2021)
3. Bashivan, P., Rish, I., Yeasin, M., Codella, N.: Learning representations from EEG with deep recurrent-convolutional neural networks. arXiv preprint arXiv:1511.06448 (2015)
4. Bommasani, R., et al.: On the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258 (2021)
5. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)