1. Browder, F.E.: On the spectral theory of elliptic differential operators I. Math. Ann. 142, 22–130 (1961)
2. Cattaneo, C.: Sulla conduzione del calore. Atti Sem. Mat. Fis. Univ. Modena 3, 83–101 (1948–1949)
3. Clarke, T., Goldstein, G.R., Goldstein, J.A., Romanelli, S.: The Wentzell telegraph equation: asymptotics and continuous dependence on the boundary conditions. Comm. Appl. Anal. 15, 313–324 (2011)
4. Coclite, G.M., Favini, A., Gal, C.G., Goldstein, G.R., Goldstein, J.A., Obrecht, E., Romanelli, S.: The role of Wentzell boundary conditions in linear and nonlinear analysis. In: Sivasundaran, S. (ed.) Advances in Nonlinear Analysis: Theory, Methods and Applications, vol. 3, pp. 279–292 (2009)
5. Favini, A., Goldstein, G.R., Goldstein, J.A., Obrecht, E., Romanelli, S.: Elliptic operators with Wentzell boundary conditions, analytic semigroups and the angle concavity theorem. Math. Nachr. 283, 504–521 (2010)