Free-Text Keystroke Dynamics for User Authentication
Author:
Publisher
Springer International Publishing
Link
https://link.springer.com/content/pdf/10.1007/978-3-030-97087-1_15
Reference23 articles.
1. Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a convolutional neural network. In 2017 International Conference on Engineering and Technology, ICET, pages 1–6, 2017.
2. Faisal Alshanketi, Issa Traore, and Ahmed Awad Ahmed. Improving performance and usability in mobile keystroke dynamic biometric authentication. In 2016 IEEE Security and Privacy Workshops, SPW, pages 66–73, 2016.
3. Mario Luca Bernardi, Marta Cimitile, Fabio Martinelli, and Francesco Mercaldo. Keystroke analysis for user identification using deep neural networks. In 2019 International Joint Conference on Neural Networks, IJCNN, pages 1–8, 2019.
4. Hayreddin Çeker and Shambhu Upadhyaya. Enhanced recognition of keystroke dynamics using gaussian mixture models. In 2015 IEEE Military Communications Conference, MILCOM, pages 1305–1310, 2015.
5. Hayreddin Çeker and Shambhu Upadhyaya. Sensitivity analysis in keystroke dynamics using convolutional neural networks. In 2017 IEEE Workshop on Information Forensics and Security, WIFS, pages 1–6, 2017.
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Cross-device free-text keystroke dynamics authentication using federated learning;Personal and Ubiquitous Computing;2024-09-10
2. Device adaptation free-KDA based on multi-teacher knowledge distillation;Journal of Ambient Intelligence and Humanized Computing;2024-08-12
3. TypeFormer: transformers for mobile keystroke biometrics;Neural Computing and Applications;2024-07-30
4. Enhancing User Authentication through Keystroke Dynamics Analysis using Isolation Forest algorithm;2024 Second International Conference on Emerging Trends in Information Technology and Engineering (ICETITE);2024-02-22
5. Evaluation of the Informativeness of Features in Datasets for Continuous Verification;Informatics and Automation;2024-01-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3