Publisher
Springer International Publishing
Reference12 articles.
1. Bartlett, Z., Han, L., Nguyen, T.T., Johnson, P.: A Novel online dynamic temporal context neural network framework for the prediction of road traffic flow. IEEE Access 7, 153533–153541 (2019). https://doi.org/10.1109/ACCESS.2019.2943028
2. Pamula, T.: Impact of data loss for prediction of traffic flow on an urban road using neural networks. IEEE Trans. Intell. Transp. Syst. 20(3), 1000–1009 (2019)
3. Sivabalaselvamani, D.: Real time traffic flow prediction and intelligent traffic control from remote location for large-scale heterogeneous networking using TensorFlow. Int. J. Future Gener. Commun. Network. 13(1), 1006–1012 (2020)
4. AbidEeN, Z.U.: The deep 3D convolutional multi-branching spatial-temporal-based unit predicting citywide traffic flow. Appl. Sci. 10(21), 7778 (2020)
5. Pamua, T.: Impact of data loss for prediction of traffic flow on an urban road using neural networks. IEEE Trans. Intell. Transp. Syst. 20(3), 1000–1009 (2019)