Improving the Robustness of Dense Retrievers Against Typos via Multi-Positive Contrastive Learning

Author:

Sidiropoulos GeorgiosORCID,Kanoulas EvangelosORCID

Publisher

Springer Nature Switzerland

Reference14 articles.

1. Lecture Notes in Computer Science;Elias Bassani,2022

2. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Burstein, J., Doran, C., Solorio, T. (eds.) Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2–7, 2019, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/n19-1423

3. Gao, L., Ma, X., Lin, J., Callan, J.: Tevatron: an efficient and flexible toolkit for neural retrieval. In: Chen, H., Duh, W.E., Huang, H., Kato, M.P., Mothe, J., Poblete, B. (eds.) Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2023, Taipei, Taiwan, July 23–27, 2023, pp. 3120–3124. ACM (2023). https://doi.org/10.1145/3539618.3591805

4. Hagen, M., Potthast, M., Gohsen, M., Rathgeber, A., Stein, B.: A large-scale query spelling correction corpus. In: Kando, N., Sakai, T., Joho, H., Li, H., de Vries, A.P., White, R.W. (eds.) Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval, Shinjuku, Tokyo, Japan, August 7–11, 2017, pp. 1261–1264. ACM (2017). https://doi.org/10.1145/3077136.3080749

5. Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering. In: Webber, B., Cohn, T., He, Y., Liu, Y. (eds.) Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16–20, 2020, pp. 6769–6781. Association for Computational Linguistics (2020). https://doi.org/10.18653/v1/2020.emnlp-main.550

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3