1. Wu, S., Fei, H., Qu, L., Ji, W., Chua, T.: NExT-GPT: any-to-any multimodal LLM. ArXiv Preprint: ArXiv:2309.05519 (2023)
2. Cui, Z., Ma, J., Zhou, C., Zhou, J., Yang, H.: M6-Rec: generative pretrained language models are open-ended recommender systems. ArXiv Preprint: ArXiv:2205.08084 (2022)
3. Hou, Y., et al.: Large language models are zero-shot rankers for recommender systems. ArXiv Preprint: ArXiv:2305.08845 (2023)
4. Gao, Y., Sheng, T., Xiang, Y., Xiong, Y., Wang, H., Zhang, J.: Chat-REC: towards interactive and explainable LLMs-augmented recommender system. ArXiv Preprint: ArXiv:2303.14524 (2023)
5. Salah, A., Truong, Q., Lauw, H.: Cornac: a comparative framework for multimodal recommender systems. J. Mach. Learn. Res. 21, 3803–3807 (2020)